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ABSTRACT

The optimization of mixture proportions for high-performance concretes, which contain
many constituents and are often subject to several performance constraints, can be a
difficult and time-consuming task. Statistical experiment design and analysis methods
have been developed specifically for the purpose of optimizing mixtures, such as
concrete, in which the final product properties depend on the relative proportions of the
components rather than their absolute amounts. Although mixture methods have been
used in industry to develop products such as gasoline, metal alloys; detergents and foods,
they have seen little application in the concrete industry. This paper describes an
experiment in which a statistical mixture experiment was used to optimize a six-
component concrete mixture subject to several performance constraints. The experiment
was performed in order to assess the usefulness of this technique for high performance
concrete mixture proportioning in general.

INTRODUCTION

In the simplest case, portland cement concrete is a mixture of water, portland cement,
fine aggregate, and coarse aggregate. Additional components, such as chemical
admixtures (air entraining agents, superplasticizers) and mineral admixtures (coal fly ash,
silica fume, blast furnace slag), may be added to the basic mixture to enhance certain
propetties of the fresh or hardened concrete. High-performance concrete mixtures,
which may be required to meet several performance criteria (e.g., compressive strength,
elastic modulus, rapid chloride permeability) simultaneously, typically contain at least six
components.
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In a recent paper, Rougeron and Aitcin' stated that, “The optimization of the composition
of a high performance concrete (HPC) is at present more of an art than a science....”
Even for conventional concrete mixes, the American Concrete Institute (ACI) guideline
document for mix proportioning® provides a method for proportioning one mix, but it
does not provide a procedure for finding the proportions which provide the best settings
to meet a number of performance criteria simultaneously. The recent ACI guideline
document for proportioning high-strength concrete containing fly ash® also does not
provide a means for optimizing mixtures. The selection of mix proportions for a
conventional concrete mix, with strength as the primary criterion, may not require a
significant number of trial batches to find an appropriate mix. However, for a concrete
mixture containing six or more components which must satisfy several performance
constraints, trial and error or “one factor at a time” approaches sufficient for a
conventional mix will be inefficient and costly. More importantly, they may not provide
the best combination of materials at minimum cost.

In this study, a statistically designed mixture experiment was used to identify the best
factor settings for optimizing properties of high performance concrete. In a mixture
experiment, the total amount (mass or volume) of the mixture is fixed and the factors or
component settings are proportions of the total amount. For concrete, the sum of the
volume fractions is constrained to sum to one, as in the ACI mix design approach’.
Because the volume fractions must sum to unity, the component variables in a mixture
experiment are not independent.

One viable experiment design option for concrete mixtures'#is the factorial design, in
which the ¢ mixture components are reduced to g-/ independent factors by taking the
ratio of two components. There are advantages and disadvantages to both the mixture
and factorial approaches. For example, the experimental region of interest is defined
more naturally in the mixture experiment approach, but the analysis of such experiments
is more complicated. The factorial (independent variables) approach permits the use of
classsical factorial and response surface designs™® , but has the undesirable feature that
the experimental region changes depending on how the ¢ mixture components are
reduced to g-/ independent factors.

Because mixture experiments have not been readily used in the concrete industry, the
utility of this approach for optimizing concrete properties was investigated. An
experiment was designed to find the optimum proportions for a concrete mix meeting the
following conditions: 50 to 100 mm (2 to 4 in) slump for the fresh concrete, 1-day target
compressive strength of 22.06 MPa (3200 psi), 28-day target compressive strength of
51.02 MPa (7400 psi), target 42-day “rapid chloride” (ASTM C1202) test (RCT)
measurement less than 700 coulombs, and minimum cost (dollars per m*). The materials
(components) used included water, cement, microsilica (silica fume), high-range water
reducing admixture (HRWRA), coarse aggregate, and fine aggregate.
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EXPERIMENT DESIGN
Background on Mixture Experiments

As a simple (hypothetical) example of a mixture experiment, consider concrete as a
mixture of three components: water (x,), cement (x,), and aggregate (x,), where each x,
represents the volume fraction of a component. Assume the coarse-to-fine aggregate
ratio is held fixed. The volume fractions of these components sum to one,

x,+x2+x3=1 )

and the region defined by this constraint is the
regular triangle (or simplex) shown in Figure 1.
The axis for each component x, extends from
the vertex it labels (x; = 1) to the midpoint of
the opposite side of the triangle (x,=0). The
vertex represents the pure component. For
example, the vertex labelled x, is the pure
water “mixture” withx,=1,x,=0,and x; =0,
or (1,0,0). The coordinate where the three
axes intersect is (1/3,1/3,1/3) and is called the Figure 1. Experimental region for
centroid. < three component mixture

X1(1,0.0)

X2 (0,1.0) X3 (0.0.1)

A good experiment design for studying

properties over the entire region of a three- x1
component mixture would be the simplex-

centroid design shown in Figure 2. This

example is included for illustrative purposes

only, since much of this region does not .
represent feasible concrete mixtures. The

points shown in Figure 2 represent mixtures x
included in the experiment. This design .

includes all vertices, midpoints of edges, and Figure 2. Layout of exper iment design
the overall centroid. All properties ofinterest ~ Jor three component simplex-centroid
would be measured for each mix in the design muxture

and modeled as a function of the components.

Typically, polynomial functions are used for modeling, but other functional forms can be
used as well. For three components, the linear polynomial for a response y is

- <

y=by +bix, +byx, +bix; +e @
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where the b, * are constants and e, the random error term, represents the combined effects
of all variables not included in the model. This model is typically reparameterized in the
form

y=bx, +bx, +bx;, +e 3) |

using by*= b,*(x, + x, + x,) and is called the Scheffé ° linear mixture polynomial.
Similarly the quadratic polynomial

Y =by +byx, + by, + by +bxex, + biximy + bygrxy + byxy +byxy +bix +e(d)

is reparameterized as

y=bpx, +byx, +byxy +bxx, + byxxy +byxx, +e &)

~usingx,” =x,(1 - x;- X9, x* = x,(1 - %, - x3), %* =x5(1 -x,-x).

Since feasible concrete mixes do not exist over the entire region shown in Figure 1, a
meaningful subregion of the full simplex must be defined by constraining the component
proportions. An example of a possible subregion for the three component example is
shown in Figure 3. It is defined by the following volume fraction constraints (x, = water,
x, = cement, x, = aggregate): "

0.15 <x, < 0.25
0.10 <x,< 0.20
0.60 <x;< 0.70

In this case the simplex designs are generally no longer appropriate and other designs'
are used. These designs typically include the extreme vertices of the constrained region
and a subset of the remaining centroids (e.g., centers of edges, faces, etc.).

Experiment Design for the Six-Component Study

Selection of proportions and
constraints - The proportions for the six-
component mixture experiment were initially
selected in terms of volume fraction and
converted to weights for batching. The
minimum and maximum levels of each
component were chosen based on typical
volume fractions for non air-entrained
concrete'' with the constraint that the volume Figure 3. Example of constrained

experimental region
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fractions sum to unity. In addition to the individual constraints on each component, the
paste fraction of the concrete (water, cement, microsilica, and HRWRA) was required to
range from 25 to 35 percent by volume. Although air is incorporated into concrete
during mixing, it is not an initial component and therefore was not considered to be a
component of the mixture. Ignoring the air content as a mix component affects yield
calculations, but these are not important for the small trial batches and can be adjusted
later after a final mix is selected.

Table 1 — Mixture Components and Volume Fraction Ranges

Component D vol?lﬂnl\l::“g::t‘ion vo?::\xelmion
Water X, .16 185
Cement X; 13 15
Microsilica X3 013 027
HRWRA X, 0046 0074
Coarse Aggregate X5 40 4424
Fine Aggregate X 25 2924

The six components and the final ranges of their volume fractions for this experiment are
shown in Table 1. The volume fractions were converted to corresponding weights using
the specific gravities and percent solids (where applicable) obtained from laboratory
testing or from the material supplier.

Experiment Design Details - The selection of an appropriate experiment design
depends on several criteria, such as ability to estimate the underlying model, ability to
provide an estimate of repeatability, and ability to check the adequacy of the fitted model.
These issues are addressed below.

The “best” experiment design depends on the choice of an underlying model which will
adequately explain the data. For this experiment, the following quadratic Scheffé
polynomial was chosen as a reasonable model for each property as a function of the six
components:

y=bx +..+ bs"s + b,lex2 ..+ bst,xswc‘5 +e ©)

This model is an extension of Equation S for the six component case. Since there are 21
coefficients in the model, the design must have at least 21 runs (21 distinct mixes) to
estimate these coefficients. In addition to the 21 required runs, seven additional runs
(distinct mixes) were included to check the adequacy of the fitted model, and five mixes
were replicated to provide an estimate of repeatability allowing us to test the statistical
significance of the fitted coefficients. Finally, a single mix was replicated during each
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week of the experiment to check statistical control of the fabrication and measurement
process. In all, a total of 36 mixes were planned.

Commercially available computer software for experiment design was used for design
and analysis of the experiment. The program selected thirty-six points from a list of
candidate points that is known to include the best points for fitting a quadratic
polynomial. A modified-distance design® was chosen to ensure that the design selected
could estimate the quadratic mixture model while spreading points as far away as
possible from one another.

Table 2 summarizes the mixes used in the experiment. The run order was randomized to
reduce the effects of extraneous variables not explicitly included in the experiment. The
first three mixes were repeated at the end of the program because an incorrect amount of
water was used in batching them. The test results from the incorrectly batched mixes
were not included in the subsequent analysis. A total of 39 batches were prepared, from
which 36 sets of test results were analyzed.

SPECIMEN FABRICATION AND TESTING

The materials used in this study included a Type I/Il Portland cement, tap water, #57
crushed limestone coarse aggregate, natural sand, microsilica (in slurry form), and a
naphthalene-sulfonate based superplasticizer (ASTM C494 Type F/G). Thirty-nine
batches of concrete, each approximately .04 m® (1.5 ft®) in volume, were prepared over a
four-week period. A rotating-drum mixer with a 0.17 m* (6.0 ft*) capacity was used to
mix the concrete.

Each batch included sufficient concrete for two slump tests, two fresh air content (ASTM
C231) tests, two unit weight tests, and ten 100 mm by 200 mm (4 in by 8 in) cylinders.
The cylinders were fabricated in accordance with ASTM C192. In order to obtain
adequate consolidation, cylinders for concretes with slumps less than 50 mm (2 in) were
vibrated on a vibrating table; otherwise, the cylinders were rodded. The cylinders were
covered with plastic and left in the molds for 22 hours, after which they were stripped
and placed in limewater-filled curing tanks for moist curing at 23 + 2°C (73 £ 3°F).

Compressive strength tests (ASTM C39) were conducted on the cylinders at the ages of
one day and 28 days. In most cases, three cylinders were tested for each age. A fourth
test was performed in some cases if one result was significantly lower or higher than the
others. Before testing, the cylinder ends were ground parallel to meet the ASTM C39
requirements using an end-grinding machine designed for this purpose. The three
remaining cylinders from each batch were used for “rapid chloride” testing according to
ASTM C1202. Three specimens (50 mm (2 in) thick slices taken from the middles of
the concrete cylinders) were tested at an age of 42 days.
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Table 2 - Summary of mix proportions (per cubic meter of concrete)

Design | RunOrder | Water | Cement | Silica |HRWRA| Coarse Fine | wi(c+sf)
ID fume aggregate | aggregate
(dry) (dry)
Gp | O | Go | O | G0 | (o
5(r) 7,22 1223 3129 454 3.52 867.6 506.3 0.35
11(r) 6,23 1414 3129 21.9 3.52 8453 506.3 0.43
13 15 1223 3129 219 3.52 810.1 592.2 0.37
15 2*,38 126.6 361.1 45.4 5.66 810.1 506.3 0.32
16 8 122.3 3129 21.9 3.52 895.9 506.3 0.37
20(r) 13,34 141.4 3129 219 3.52 810.1 541.8 0.43
22 4 1414 354.8 21.9 3.52 810.1 506.3 0.38
28 16 122.3 312.9 454 3.52 810.1 563.8 0.35
37 30 1223 3370 454 5.66 810.1 537.9 0.33
38(r) | 3*,26,39 | 1350 341.1 454 3.52 810.1 506.3 0.36
48 28 131.8 312.9 21.9 5.66 810.1 561.2 0.4]
63 27 131.8 3129 454 5.66 836.6 506.3 0.38
65 31 122.3 337.0 454 5.66 841.7 506.3 0.33
66 25 1223 3129 45.4 5.66 836.0 532.2 0.35
70 29 1223 361.1 219 4.59 810.1 548.8 0.33
71(r) 5,35 1223 3611 | 219 5.66 829.9 526.1 0.33
78 11 141.4 3129 | 454 5.66 810.7 506.9 0.41
87 24 1223 3129 219 3.52 853.0 549.2 0.37
89 19 122.3 3370 21.9 3.52 810.1 571.9 0.35
91 9 1414 312.9 21.9 5.66 8249 521.1 0.43
98 17 122.3 3370 21.9 3.52 875.7 506.3 0.35
101 10 130.8 361.1 219 | 3.52 832.8 506.3 0.35
103 14 122.3 361.1 21.9 4.59 852.6 506.3 0.33
110 21 130.8 361.1 219 3.52 810.1 529.0 0.35
116 33 131.8 312.9 45.4 5.66 810.1 532.8 0.38
123 36 122.3 3370 33.6 4.59 8344 530.6 0.34
127(c) | 1%,12,18, | 1315 3358 219 4.59 829.9 526.1 0.38
32,37
163 20 126.6 3233 27.8 5.12 857.5 513.6 0.37
otes: 1 1=33.81 oz, 1 kg=2.2046 Ib.
r) indicates replicated mix

¢) indicates control mix
indicates mix which was repeated due to incorrect batchin

RESULTS AND ANALYSIS
The average values for slump, 1-day strength, 28-day strength, rapid chloride test

measurement (coulombs) for each batch are shown in Table 3, along with the estimated
cost per cubic yard of concrete. The cost of each batch was calculated from the mix
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Table 3 — Test Results and Costs

Design Run Slump 1-day str | 28-day str 42-day RCT Cost
ID (mm) (MPa) (MPa) (coulombs) ($/ m%)
22 4 67 21.5 48.2 1278 95.18
71 5 57 27.0 55.2 862 102.22
11 6 102 16.8 48.5 1162 91.32

5 7 13 224 48.5 387 118.85
16 8 35 21.6 53.1 776 92.20
91 9 200 16.8 60.4 1027 96.89
101 10 22 26.6 53.6 744 96.24
78 11 127 19.2 51.7 492 123.56

127 12 99 21.5 50.2 842 96.67
20 13 118 18.2 50.9 903 91.32
103 14 64 274 54.6 583 99.42
13 15 57 21.8 53.2 684 92.20
28 16 29 222 53.6 292 118.85
98 17 32 25.3 51.9 604 94.41
127 18 . 92 223 54.1 847 96.67
89 19 38 21.8 543 720 9441
163 20 95 2.1 60.8 554 103.80
110 21 51 247 532 792 96.24

5 22 25 234 54.1 348 118.85
11 23 114 16.5 48.0 968 91.32
87 24 67 22.9 51.0 700 92.20
66 25 76 24.7 59.8 316 124.44
38 26 29 23.0 53.2 390 120.85
63 27 124 21.7 55.2 302 123.99
48 28 171 23.0 58.1 682 97.34
70 29 51 27.5 54.5 505 99.42
37 30 35 27.3 56.0 245 126.65
65 31 32 27.2 51.1 310 126.65

127 32 121 224 57.2 636 96.67
116 33 114 239 56.2 356 123.99
20 34 127 18.6 51.6 820 91.32
71 35 108 28.8 65.3 553 102.22
123 36 99 26.6 61.0 340 110.53
127 37 102 24.2 54.6 640 96.67
15 38 51 28.8 58.1 239 128.68
38 39 _25 23.6 54.5 332 120.85

Note: 1 mm =.0394 in., | MPa = 145 ps—i, 1 m®=1.308 yd

237




proportions using approximate costs for each component material obtained from a local
ready-mix concrete producer. Each of the four responses was analyzed by fitting a
model, validating the mode! (by examining the residuals for trends and outliers), and
interpreting the model graphically using contour and trace plots. The statistical analysis
is described in detail for 28-day strength. The analyses for the other properties was
performed in a similar manner.

Model Identification and Validation
The first step in the analysis is to identify a plausible model. Even though the design
selected permits estimation of a quadratic model, a linear model may provide a better fit

to the data. This is assessed using analysis of variance (ANOVA). The ANOVA results
for 28-day strength are shown in Table 4%”. The row with source /inear tests whether the

Table 4 - ANOVA Table for 28-day strength

Sum of Mean
Source Squares DOF Square F Value Prob>F

Mean 1.062E+05 1 1.062E+05

Linear 257.52 5 51.50 546 0.0011
Quadratic 135.19 15 901 | 0.92 0.5665
Residual 147.62 15 9.84

Total 1.068E+05 36 2965.37

coefficients of the linear terms are equal. In the absence of quadratic terms, this means
that mixing does not affect response (i.e., any mixture would give the same response).
We conclude that the coefficients differ for low values (say less than 0.05) of the Prob >
F (also called the p-value). Since the Prob > F value is 0.0011, we conclude that linear
terms should be included in the model. The row with source quadratic tests whether any
quadratic coefficients differ from zero. Since the Prob > F value of 0.5667 exceeds 0.05,
we conclude that quadratic terms should not be included in the model.

The resulting linear model for 28-day strength (y,), fit by least squares, is

$, = -45.22x, + 89.15x, - 3.81x, + 1972x, + 38.36x, + 87.19x, ™

with residual standard deviation s = 3.07 MPa (445.4 psi).
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The residual standard deviation s is defined as

§= E (y‘ —)‘; ;)2) (8)
‘j n-p

where the number of observations » = 36 and the number of parameters in the fitted
model p = 6. A value of s near the repeatability value (replicate standard deviation) is an
indication of an adequately fitting model. The repeatability value is 3.39 MPa

(492.3 psi), which is close to s.

The fitted model is then validated by examining residual plots. The residuals are the
deviations of the observed data from the fitted values, y, - §,. The residual y, - ..
estimates the error term e, in the model. The ¢/'s are assumed to be random and normally
distributed with mean 0 and constant standard deviation. The residuals, which estimate
these errors, should exhibit similar properties. Essentially, an adequate model should
capture all information in the data leaving structureless, random residuals. If structure
remains in the residuals, residual plots will often suggest how to modify the model to
remove the structure. In this study, a plot of residuals versus run sequence as well as a
plot of the control mix data revealed a linear trend in the data for each response.
However, because the run sequence was randomized, this trend had little impact on the
fitted models.

Trace Plot (Cax)
Graphical Interpretation 58 —

Once a valid model is obtained,

it can be interpreted graphically
using response trace plots and § 56
contour plots. A response trace

plot is shown in Figure 4. This E
figure consists of six overlaid

plots, one for each component. g 5
For a given component the fitted
value of the response is plotted

as the component is varied from §'
its low to high setting in the Q
constrained region, while the
other components are held in the
same relative ratio as a specified
reference mixture, here the
centroid. The plot shows the
"effect” of changing each

component on 28-day strength. Figure 4. Trace plot for 28-day strength

Siice Fure

. Cosrse Agg

&—4

50 T T T l T I i I T ]

-0.01 0.00 0.01 0.02 003 0.04
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As expected, increasing the amount of water decreased strength, while increasing the
amount of cement increased strength. HRWRA had the largest effect with higher
amounts of HRWRA yielding higher strength. This may be due to the improved
dispersion of the cement and silica fume caused by higher amounts of HRWRA.
Surprisingly, an increase in silica fume appears to reduce strength. This apparent
reduction may not be significant when compared to the underlying experimental error.

Contour plots are used to identify conditions which give maximum (or minimum)
response. Because contour plots can only show three components at a time (the others
components are set at fixed conditions), several must be examined. Figure 5 is a contour
plot of 28-day strength for water, cement, and HRWRA, with the other components fixed
at their centroid values. The plot indicates that strength increases rapidly by increasing
HRWRA, confirming the result from the response trace plot. Therefore, in subsequent

wafor
1.8003E-01

ODOE-0

28 day str

Figure 5. Contour plot for 28-day Figure 6. Contour plot for 28-day
strength (MPa) in water, cement and strength (MPa) in water, cement and
HRWRA (microsilica =.018, microsilica (HRWRA =.0074,
CA=.410, FA=.259) CA =.410, FA =.259)

contour plots, HRWRA will be set at its high value.

Figure 6 shows a contour plot of 28-day strength in water, cement, and microsilica, and
Figure 7 shows a contour plot of 28-day strength in water, coarse aggregate, and fine
aggregrate. In each case, HRWRA is fixed at its high value and the other components are
fixed at the centroid settings. These plots show that strength increases for low water,
high cement, low microsilica, low coarse aggregate, and high fine aggregate. The best
overall settings can be found using the contour plot shown in Figure 8 for microsilica,
coarse aggregate, and fine aggregate at the best settings of water, cement, and HRWRA.
The best settings (expressed as volume fractions) are water = 0.16, cement = 0.15,
microsilica = 0.013, HRWRA = 0.0074, coarse aggregate = 0.40, and fine aggregate =
0.27, with a predicted value of strength of 59.53 MPa (8634 psi).
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water
1.8701E-01

Figure 7. Contour plot for 28-day Figure 8. Contour plot for 28-day
strength (MPa) in water, CA and FA strength (MPa) in microsilica, fine
(cement =.1376, microsilica =.018, aggregate, and coarse aggregate (water
HRWRA =.0074) =,16, cement =.15, HRWRA = .0074)
Models for Other Responses

Using the same procedure described above for 28-day strength, the following models
were fit to slump (y,), 1-day strength (3;), and 42-day RCT results (3,):

¥, =85.27x, -94.09x,~133.92x, +955.63x, -8.07x, +6.69x, ©)

$, =-1.752E+05x, +2.5T3E+05x,-10723x, - 1.732E+06x, +8632x,~15245x +
6.107E +05x,x,-8.118E +05x,x,+6.328E +06x,x, +6.481E+06xx, 1)

In($,)=20.34x, ~2.99x, -49.68x, ~29.65x, +7.96x,+4.15x, an

Linear models were adequate for all responses except the 1-day strength, for which the
fitted model includes four quadratic terms which were found to be significant. The
natural logarithm of 42-day RCT was used for modeling, since residual plots showed that
the standard deviation of 42-day RCT was proportional to the mean.
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Selection of Optimum Mix

The optimum concrete mix is defined here as that mix which minimizes cost while
meeting the specifications. Numerical optimization using desirability functions® can be
used to find the optimum mix. First, a

desirability function must be defined for

each property. The desirability function ‘I\'_ err _|_/\_'__

takes on values between 0 and 1, and o352 12888 162

may be defined in several ways, as A .lu., RCT e
indicated in Figure 9. Minimum and

maximum specifications are used for 102 8274 2206 3448
strength and RCT, respectively, resulting

in desirability functions with values of 1 R e diN Ot svengh
above the minimum or below the ol ppat
maximum and zero otherwise. For

example, for 1-day strength the . e vere ]
desirability value is 0 below 22.06 MPa Figure 9. D“;{:"If""%'f unctions for
(3200 psi) and 1 above 22.06 MPa (3200 optimization

psi). At 34.48 MPa (5000 psi) the desirability becomes 0, however this strength was
chosen to be well beyond the maximum value in the observed data. Desirabilities for 28-
day strength and 42-day RCT are defined similarly. For stump a range of 50 to 100 mm
(2 to 4 in) was specified, but the most desirable value is the midpoint of this range, or 75
mm (3 in). Therefore, the maximum desirability is given to the target value of 75 mm

(3 in), with a linear decrease in desirability to a value of Zero at the lower and upper
specifications (see Figure 9). Since cost is to be minimized, the desirability function for
cost decreases linearly over the range of costs observed in the data (see Figure 9). Itis
also possible to develop more complex desuablhty functions (e.g., non-linear function
instead of linear for cost).

In the numerical optimization scheme, the optimum mix maximizes the geometric mean
D of the individual desirability functions d, over the feasible region of mixtures, using the
fitted models:

D=(dd,d,d,d)"? (12)

Based on the experimental results, the mix which maximizes D, expressed in volume
fractions, is water = 0.160, cement = 0.130, microsilica = 0.013, HRWRA = 0.00493,
coarse aggregate = 0.404, and fine aggregate = 0.287, at a cost of $92.94 per cubic meter.
The response values for this mix are slump =75 mm (3 in), 1-day strength = 22.06 MPa
(3200 psi), 28-day strength = 54.62 MPa (7922 psi), and 42-day RCT value = 653
coulombs.
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If the fitted functions for each property were known without error, the analysis would be
complete. However, there is uncertainty in the fitted functions since they are estimated
from a sample of data. For example, at the current mix the predicted 1-day target
strength is 22.06 + 0.97 MPa (3200 + 140 psi). The uncertainty provided is for a 95%
confidence interval, i.e., we are 95% confident that the interval (21.09, 23.03) contains
the true 1-day target strength for this mix. So if this mix is used, it is quite possible that
the true 1-day target strength would fall below 22.06 MPa (3200 psi). Therefore, each
specification must be modified to account for the uncertainty in the fitted function, which
depends on the location of the mix in the feasible region. The uncertainties in the
properties of the current mix can be used to modify the constraints and identify a revised
optimal mix for these new constraints. The revised mix must then be checked to see that
the specifications are met.

The predicted values and 95% uncertainties for the remaining responses at the current
best mix are slump = 75 + 15 mm (3.0 + 0.6 in), 28-day strength = 54.62 + 2.99 MPa
(7922 + 434 psi), and 28-day RCT = 653 + 81 coulombs. The modified constraints on
the responses which take into account the uncertainties are 66 mm < slump < 86 mm
(2.6 in < slump < 3.4 in), 1-day target strength > 23.03 MPa (3340 psi), 28-day target
strength > 53.78 MPa (7800 psi), and 42-day RCT < 620 coulombs. The best mix for this
new set of constraints (expressed as volume fractions) is water = 0.160, cement = 0.135,
microsilica = 0.0131, HRWRA = 0.00533, coarse aggregate = 0.401, and fine aggregate
=(.285 at a cost of $72.54. The predicted values and 95% uncertainties for this mix are
slump = 75 £ 15 mm (3 0.6 in), 1-day strength = 23.09 + 0.77 MPa (3349 + 112 psi),
28-day strength = 55.48 £2.72 MPa (8047 + 394 psi), and 42-day RCT =617 + 81
coulombs. The lower or upper bound values (as appropriate) for all responses meet the
specifications.

CONCLUSIONS AND RECOMMENDATIONS

In high performance concretes consisting of many components, where several properties
are of interest, it is critical to use a systematic approach for identifying optimal mixes
given a set of constraints. Statististical experiment design and mixture experiments
provide such an approach. They permit a thorough examination of a feasible region of
interest in which to identify optimal mixes. Fitted models are obtained from the
experimental data and are used to identify optimal mixes over the region.

Typically, quadratic models are assumed to provide an adequate representation of each
property over the region of interest. For a six-component mixture, 21 mixes are required
to fit a quadratic model, although additional runs should be included for checking the
adequacy of the fitted model and estimating repeatability. A minimum of 31 runs is
recommended. For the materials and conditions of this experiment, a linear model was
adequate for all but one response (1-day strength). Since materials and conditions will
vary by location, the quadratic model should be considered initially. However, if a linear
model is found to be adequate for all responses of interest, the number of experimental
runs can be halved.
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Extra care is required to run a designed experiment; however, the results are well worth
the additional effort. With many components and several properties of interest, trial and

error methods could easilv miss the optimal nnprhhnnq resultino in higher costs to
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producers over the long-term.

10.

11.
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